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Abstract

Incorporating subset selection into a classification method often carries a num-
ber of advantages, especially when operating in the domain of high-dimensional
features. In this paper, we focus on Bayesian network (BN) classifiers and formal-
ize the feature selection from a perspective of improving classification accuracy.
To exploring the effect of high-dimensionality we apply ip@wing dimension
asymptotics meaning that the number of training examples is relatively small
compared to the number of feature nodes. In order to ascertain which set of fea-
tures is indeed relevant for a classification task, we introdudsstance-based
scoring measureeflecting how well the set separates different classes. This score
is then employed to feature selection, using the weighted form of BN classifier.
The idea is to view weights as inclusion-exclusion factors which eliminates the
sets of features whose separation score do not exceed a given threshold. We estab-
lish the asymptotic optimal threshold and demonstrate that the proposed selection
technique carries improvements over classification accuracy for different a priori
assumptions concerning the separation strength.
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1 Introduction

This paper is about techniques for improving the performance accuracy of the classi-
fication methods in high-dimensional framework. Such methods operate on a given
set of examples to producectassifie; sometimes also called classification rule, or

in the machine-learning literature, a prediction algorithm. The goal is to find a classi-
fier with high performance accuracy, that is a low misclassification rate on a separate
test set. In our analysis, we employ Bayesian Network (BN) models, which have an
increasing number of applications in classification theory (e.g. Cowell et al. 1999)
as well as in decision analysis and artificial intelligence (Korb and Nicholson 2003),
offering complementary advantages such as ability to deal effectively with uncertain
and high-dimensional examples.

The focus of the study is ofeature selectionwhich involves identifying a set
of feature nodes of the input examples that are highly relevant for classification task.
More generally, feature selection can be viewed as a problem of setting discrete struc-
tural parameters associated with specific classification method. We subscribe here to
the view that feature selection is not merely for reducing the computational load as-
sociated with a high-dimensional classification problem but can be tailored primarily
to improve performance accuracy.

The common need for all subset selection procedures is an evaluation function by
which a separation strength of a feature, or a subset of features, is assessed. Assum-
ing that the performance measure is defined by the misclassification risk, the latter
seems to be a most appealing function for this. However, it was shown in (Pavlenko
and von Rosen 2001), that under rather mild regularity conditions for class probabil-
ity densities, the asymptotic misclassification risk can be expressed as a monotone
transform of the cross-entropy distance between the classes. This theoretically justi-
fies the use of a distance-based scoring measure since it induces, over the set of all
potential features, the same ranking as the one induced by the misclassification risk.
The form of feature selection we develop in this study is an extended version of the
weighting techniquescently proposed for augmented BN classifiers in order to make
more pronounced the inputs of highly informative sets and thereby increase the per-
formance accuracy, (Pavlenko and von Rosen 2002). Given the separation score of
each set of features, we redefine the weight-functioris@gsion-exclusioriactors
which depend on a selection threshold and reflect whether the set is chosen for the
classification. The main objective is to specify the optimal threshold (score), so that
the classifier will then be based only on the sets that have this score or higher.

We emphasize that the feature selection is carried out jointly and discriminatively
together with estimation of the specific augmented BN classifier. This type of feature



selection is, clearly affected by inaccuracy of estimates involved. The effect is es-
pecially pronounced in a high-dimensional setting, i.e. when the number of training
examples is relatively small compared to the number of feature nodes. We employ
a growing dimension asymptotiepproach and show how it can accommodate BN
classifies and enables us to evaluate the asymptotic distribution of the classifier and
optimize the threshold, simultaneously taking into account bias and variance effects.

The paper is organized as follows: in Section 2 we present augmented BN mod-
els and introduce the growing dimension asymptotics. Distance-based scoring mea-
sure is derived in Section 3 together with asymptotically optimal weighting schemes.
These results are then used in Section 4 to define the selection technique and specify
the optimal threshold. We conclude in Section 5.

2 BN classifier in high-dimensional framework

A BN model M = (G, Fg) for a set of random variables = {xz1,...,z,} is a set

of joint probability distributions, specified via two components: a strucguend

a set of local distribution familiesg. The structures for x is a directed acyclic
graph having for every variable in x a node labelled by; with parents labelled by
PaiM. In this wayg represents a set of conditional independence assertions which
implies a factorization of the joint distribution efinto F'(x) = [[/_, F(x;|Pa*),
where F'(x;| Pa*!) are thep conditional and marginal probability distributions and
eachF (z;| Pa) belongs to the specific family of allowable local distributigF.

We assume that consists of continuous random variables and each local probability
distribution is selected from a familfg ¢ which depends on a finite set of param-
etersd € O©. The parameters for a local distribution are a set of real numbers that
completely determine the functional form BYz;| Pa™), given M. Consequently,

the joint probability density for a BN model is represented by

p

flar,. .. 2p;0) = [ [ f (@i 05| Pai™),

i=1
whered, ..., 0, are subsets dof and f (z;; 6;| Pa™') are conditional local densities.

In the current study, BN models will be embedded in thessification frame-
work where the outcome of interests, falls into v unordered classes, which for
convenience we denote by the 12, ..., v}. The goalis to build a rule for assess-
ing the class membership of an item baseg éature variables € RP, whose joint
conditional probability density in each class is represented by a BN médehav-
ing its own set of parameters, but sharing a common structure. Using Bayes’ theorem



and flipping the densities into class posterior probabilifieg |x) we construct the
classification rule

c=j if Prlc=jlx)= max Pr(c = k|x), (1)

wherePr(c = j|x) « 7;f(x;67), Pr(c = j) = =; are class prior probabilities,
j=1,...,vandx denotes proportionality. This is in fact the definition ajeneral
Bayesian network classifi€BN classifier) commonly found in the literature (e.g.
Cowell et al. 1999).

2.1 Augmenting via binary classification

A well-known example of the BN classifier is tmaive Bayesian classifiewhich
is a network with one arc from the class nodéo each of the feature nodes.
In this case( represents the assumption that the feature variables are conditionally
independent, given the class variable, from which it is immediate that; ) =

[ fzj (xi;0),j=1,...,v. Hence Pr(c = j |x) o m; [TV, fj(xl, 0). Itis worth
noting that the naive BN classifier does surprisingly well when only a finite sample
of training observation is available. This behavior has been noted in (e.g. Hastie et
al. 2001). The naive Bayesian approach also turns out to be effective when studying
the high dimensionality effect; see for instance, (Friedman 1997), where the bias and
variance induced on the class density estimation by the naive Bayes decomposition
and their effect on classification have been studied.

However, the total conditional independence inherent to the naive BN is far from
being realized in most applications. To relax this assumption we use the method-
ology proposed by (Friedman et. al 1997) where the problem was approached by
augmentinghe naive BN model by allowing additional arcs between the nodes that
capture possible dependencies among them. In this way, the original set of nodes is
decomposed into several subsets and, requiring the subsetsntinkmverlapping
the network structurg forms a decomposition of botaandé’ into x pairwise dis-
joint, independentn-dimensional subsets, so that= xm andx = (x1,...,Xx),

9 = (0{, . ,9,].6) wherex; = (1’i1,...,xim), 93 = (9‘31, ,Hfm) 1 =1,...,K,
j = 1,2. We call these structuresugmented Bayesian networfaigmented BN)
and the subsetslocks

Augmenting the network followed by the block independence implies that the
joint probability density ok for each class can be decomposed into a product of local
interaction models, i.ef (x;67) = [, fi(x:; 6!), where the locain-dimensional
density f; (x;; 6{) belongs to a familyFg ¢ which depends on a finite set of parame-



tersef €0,i=1,...,k, 7 = 1,2. This makes it possible to build a classification
model separately for each block, and then combine all local classifiers.

To learn the augmented BN classifier we need to choose parametric families
for representing the local class conditional densities. Gi{veme assume that the
family F; o satisfies the following regularity conditions: for eag) the function
(x5 67) == In fi(x;67) is three times differentiable in the components?pfand
all first-, second- and third- order derivatives with respe@/tof ¢(x;; #/) are inte-
grable with respect tg(x; 0;) dx, j = 1, 2.

In what follows we restrict ourselves tainary classification the special (but
common) case in which = 2 and assign to the class that wins the most pairwise
comparisons. Further, we will make use of the decision boundaries that are expressed
in terms of a logarithmic difference between two densities, i.edigariminant score

C(x;0%,60%) = £(x;0") — £(x;6%).

To motivate why this representation of the classifier is attractive, we note first that the
scoreC(x; 6!, 62) preserves the ordering of the class posterior probabilities leading
to the decision rule

1 whenever C(x;6',62) > InZ2,
e(x) = { 2 otherwise 1 @)

which is equivalent to (1).

&1 = Pr(C(x; 0", 6%) < In 2|e(x) = 1), (3)
™

& = Pr(C(x; 0", 6%) > In "2 |c(x) = 2). (4)
T

These in turn form th8ayes riskR ¢ (.91 92) = m1&1 + m2€2, Which gives a straight-
forward way of judging the classification accuracy. Note also that in the symmetric
case with equal prior probabilities both class-wise error rates are equal, and the min-
imum attainable Bayes risk B¢ (x.g1 g2) = 5(&1 + £2).

2.2 High-dimensional framework and estimates

A theoretically sound way to deal with the high-dimensional problem is to turn to
a general asymptotic approach, meaning that a relationship between dimensionality
and sample size satisfies the condition:

lim A(p,n;) < oo,

4



where(p, n;) is a positive function increasing alopgand decreasing along, j =
1,2. Since the increase pfandn; is somehow simultaneous in a high-dimensional
setting, the asymptotic approach we are going to work with can be based on the ratio

where0 < 1 < oo is a certain constant for eagh= 1,2. This approach is often
referred to under the name gfowing dimension asymptoti¢g®avlenko and von
Rosen 2001) and the goal is to apply this to explore the high-dimensionality effect on
the classification performance. Regarding in this study we assume the same rate
of growing for both samples sizes so that= ns = n.

In order to completely specify the learning method in the context of augmented
BN model, we define the asymptotic properties of estimé{[&e be plugged-in into
C(x; 8", 6%). We introduce the statistid§ = n'/2(67 —67)'1'/2(¢), which for each
i =1,...,r describes the standardized bias of the estirdatesherel’ = 1(67) is
the Fisher information matrix which is positive definite for &l € ©’ and whose
eigenvalues are bounded from above. By the network structure, the matrices are of
block-diagonal form with blockd? = I(#7) of dimensionm x m,j = 1,2. We
assume that the estima?tzéis such that for each uniformly ini:

1. lim,, o max; |E[T]| = 0.

2. All eigenvalues of the matricesE[(67 —67) (67 —67)'] are bounded from above
so that

ln, max [nE[(6 — 67 1(6) (8¢ — 69)] — m
= lim max ’E[<szszj>] —m| =0,

where(e, o) denotes the scalar product.

3. max; E[|T]°] = O(;p)- (6)
4. The asymptotic distribution ng converges toV,,, (0, I) asn approaches in-
finity.

These assumptions form the standard set of “good” asymptotic properties, of which
first threAe reflect unbiasedness, efficiency and boundness of the third absolute mo-
ment of¢/, uniformly in¢ asn — oc.



Let us now in this framework analyze classifiix; 6, 62), given the structure
G. Since we fix the block-size to the constamtthe total number of blocks,, must
grow together witm according to (5) in such a way that
lim E:p, where 0 < p < oo (7)

n—oo N

andn = mp. This assumption being designed for augmented BN, is just a particular
case of (5).

Further, by the block independence we get

(x;0',6%) = Zc (x;; 0}, 62), (8)

Z”L

whereC;(x;; 0}, 02) = £;(xi;01) — £;(x;;62), which implies that the classifier in-
duced by augmenting BN i®g additivein each block and the corresponding pro-
cedure is within the frame of th@eneralized Additive Modelsee (Hastie et al.
2001). The main advantage of the additive structure of the augmented classifier is
that in the asymptotic framework specified by (Z)x; 61, 92) can be viewed as a
sum of a growing numbers: (grows together witt) of independent random vari-
ables and, under rather mild regularity conditions imposed on the family of local
densities¥; o, we may state the convergence of this sum towards a Gaussian dis-
tribution. This methodology has been studied in details in (Pavlenko and von Rosen
2001), where the asymptotic distribution @fx; 8*,62) was used to establish the
minimum misclassification risk

R ﬂl),

cveinin — ®( - 2 fm

asn — oo by (7), whered(y) W [? . exp(—z%/2)dz andJ denotes the cross-
entropy distance between the classes defined as

f1(x; 6" . .
In )<f( ,91)—f2(x,02)>dx. (10)

(9)

J =

3 Separation score and weighted BN classifier

Given the augmented structufespecified bym and«x, the cross-entropy distance
JY defined by (10) is additive and decomposablg@s= "% | J;, where

fz( X4 z)

J; =
fz(sz 7,)

(f(x;0") — f(x;60%))dx (11)



is the input ofith block of nodes towardg?. Our idea is to employ this quantity
to evaluate the relevance of the block with respect to (for) classification: We define
theseparation scoref theith block by the valuégﬁ, and its sample based analogue

n

JI with estimated parameters | f;(xl,ej). Normalization byn is to ensure that
0 < i < oo asn — oo according to (7).

In the growing dimension asymptotics framework it is worthwhile introducing a
distribution function of the block scores as

1 K

where1, 4, is the indicator function of the set. We suppose also that the con-
vergencdim,,_,., H,(u) = H(u) takes place uniformly in and H () is a known
distribution. Observe that using the distributiéh(v) in asymptotics (7) we can
conclude that

J = lim J9 = lim } J; = 2p/udH(u), (12)
=1

whereJ is the limiting value of the cross-entropy distance for gigen
To incorporate the block separation strength into classification we specify the

weight-function of theith block byw; := w(”ji) wherew;(u) is nonnegative and
bounded for, > 0 and define theveightedBN classifier as

Co(x;0',6%) = sz Ci(x;0},6%), (13)
which provides us with the natural extension of the augmented BN model: each local
classifierC; (x;; 6}, 62) is weighted by the correspondent block separation ségre

1?71

When weighting the network by separation score in practical situations, it is es-
pecially important to investigate the asymptotic properties of estim%ie&“,ince we
generally can not obser\ﬂg&. An impression about the bias induced in the separa-
tion score by the plug-in estimative approach for high-dimensional data is given by
considering the asymptotic distribution é} established in (Pavlenko 2003). It is
shown that uniformly ini asn — oo the distribution of"Tji converges to the non-
centralx? distribution, x (u; m,+?) with m degrees of freedom and non-centrality
parametewf, i =1,..., k. This asymptotic result reveals a remarkable property of

”Jl in high- dlmen3|onal case: For the non-cenfraldistribution one can see that

A

ng'
2

E[—2] =2 +m+ O(n~%?), (14)



wherey? = ”j (see, for instance Johnson et al. 1995) which impliesltﬁabver—

estimateghe true value of the separation score up to the ordethe block size.
Furthermore, the accumulation of the bias over the increasing number of blocks in
asymptotics (7) leads to the bias of the classifier of o€t/ ), which in turn can
severely hurt the classification accuracy. To help with this problem, i.e. to take into
account the bias induced by plug-in estimation, we derive a down-weighting proce-
dure which can be provided by a properly chosen weight-funatian (13). This
function is obtained by minimizing the misclassification rigk, over all possible
type of weighting assuming th& ,, = &2, i.e. whenmy, = 0, in which case
Ry = ®(— Zw), whereD,, = L

T
E, = p/’yz[/w(u)x(u;m + 2,7%)du)dH (v?), (15)
V=20 [ | [ we(wpxtusm, 2 duldt2?) (16)

These in turn give the optimal type of weighting as

_ [P x(uym +2,4%)dH (%)
w0 = T DA "

4 Selection technique

We now extend the formulations to accommodate feature selection. We denote by
ro the putative number of irrelevant blocks and assume that for all1,.. ., o,

plimy, oo "é] = 73 andlim, . %2 = %, whereplim means limit in probability

andy > 0 is a fixed small constant. The first assumption is to reflect that the irrele-
vant blocks suppose to have close sample characteristics, i.e. low sample separation
score with the same limit valueZ and the second one is to ensure that the number
of irrelevant blocks is sufficiently small. In fact, the notionumber of irrelevant
blocks is subtle in the growing dimension framework. When reasoning in a usual
way, certain number of relevant or irrelevant blocks is a measure of absolute growth
rather than relative. On the other hand, it seems unsound to make a finite selection
from an infinite number of potential feature nodes. By normalizipgvith the total
number of blocksk we determine the notiorfraction of irrelevant featuregdenoted

by ¢, which suits better the needs of our current investigation.

The method adapted in this paper to incorporating the subset selection step into
classification is based on the replacing the weight-function in (13) with its discrete



analog of the formw; (u) = 1[’\/8,00)(”)’ so that

i=1

1=

The indicator form ofw;(u) can be seen as a special type of weighting and thus
works as arinclusion-exclusion factothereby eliminating the blocks whose sepa-

ration score,"gi, does not exceed the threshqlgi Our goal is to determine the
optimal subset of blocks ¢ < k) whose contributions towards classification are
essential and using asymptotic results, develop the practically useful selection proce-

dure where the unknown threshojgl can be estimated from data.

Since we are looking for the sets of nodes which provide the better classifica-
tion performance, optimizing the feature selection must be based on minimizing the
misclassification riskk. To do this, we first investigate the asymptotic effect of ex-
cluding a set of low informative blocks by usia¢C) = C — C, which represents the
difference between the classifiébased on the selectédblocks and the classifier
C where all of the potentiat blocks are used. Further, to relate the difference be-
tweenC andC to the results (9) and (15)-(16) we note that the misclassification risk
R is a function of the first two moments of the the weighted classifier and therefore,
to proceed, we need to evaluater,,) ande(V,,) which is done in the following
theorem.

Theorem 1 If lim,, .o, 52 = ¥ > 0 where is small, then with the optimal weight-
ing by (17)

27,

m[v@(% + 4pm) — 2m(J, + 2pm)], (19)

£(D) = (p)

wherew'(u) = %w(u), D = and in the asymptotic framework

Ey ’
vV wzl['yg,vo)(u)
specified by (7, = plim, oo 3.0, Ji-

Due to space consideration we do not represent the detailed proof here.



Now, using the estimation scheme (6) we can specify the selection procedure
which minimizes the misclassification risk. Observe tRabeing a monotone de-
creasing function oD can be diminished by the feature selection (18) if and only if
(D) > 0, i.e. if D > D. This implies that in (19) we require theg(J, + 4pm) —
2m(J, + 2pm) < 0 sincee(p) is negative, and therefore

Jp +2pm

2
o (20)

8 < 2m

SO tlhaét tge blocks with the limiting separation score lower m@% should be
excluded.

The practical implementation of the selection technique requires specification
of both separation score and selection threshold from the data. Estimation scheme
for % is already specified in (6) and one can redly see that the standard type of
estimates like, for example maximum likelihood, satisfy the conditions. To evaluate
the threshold in practice we relate (20) to the exact form of the asymptotic cross-
entropy distance given by

p lim J®" = J + 2pm.

n—oo

This results follows straightforwardly from the representation

Ji= M+ T~ T2 T~ T2 4+ O ), (21)
whereTij are defined in (4) and? = "é’ is, in this context the true separation
score distributed by7,,(u). (21) is obtained by the standard Taylor series expansion
of fi(xy; é{) aboutaf and taking into account the regularity conditions imposed on
Fg e, see the details in (Pavlenko 2003). Using the convergence properfibs of
we further write

p lim Z J; =2 lim L /(72 +m)dH,(7?) = J + 2pm,
=1

n—o00 4 n—oo N

by (7) and (12), where the bias-te2mpm highlights the effect of high dimensionality.
With these results we establish the selection procedure: to improve the classifica-

tion accuracy, théth block should be excluded if

nJi <9 J

m—-———. 22
2 Jrn 4 2pm (22)

To give an impression of how the proposed feature selection technique effects the

10



Figure 1: H(u) = Uy y is specified for each € [0; 1.3] and for each blockD and

D (upper panel) as welR andR (middle panel) are plotted as functionsdf/2,
without selection (solid lines) and with selection (dashed lines), respectively. The
bottom panel represents the distributioniof R /R.

classification accuracy, we consider two caseH (i) specifying our griori know!-
edge about the block separation strength giyelVe first assign the block separation
score a uniform distribution, i.e. assume tiatu) = U, (u), wherea andb are
given constants. For the second case, we assuméfthat= x(u,m,~?), i.e. that

the separation strength has the non-centfatlistribution withm degrees of free-
dom and non centrality paramet&?. For each case we calculate estimates of the

block separation scoreg% and the cross-entropy distandg using the data pro-
duced from the correspondent distributiéf{«) and then compare betweénhand

D for different network models represented in termgafndm for the training set,

and different values of, b, v* and different training set sizes. Since the proposed
selection technique is based on estimates, we have to take into account the high-
dimensionality effects when evaluating the classification performance. To do so, we
focus on the training sets of the size= 1200 assuming that = 100 andm = 12

for both distributions.

Figures 1 and 2 represent the behaviofbandR (using# selected blocks) as
well as D andR (using all x blocks), as functions of the sample size normalized
by the range of the correspondent distributiéitu); see two upper panels, respec-
tively. Histograms in the bottom panels illustrate the benefit in classification accuracy
arising from the feature selection approach for each particular choiegf. The
selection procedure is running for each sample and since the training examples are

11



Figure 2: H(u) = x(u;m,~?) is specified for each € [0;1.3] and for each block;
m and~? are uniformly drawn from values ifl; km] and[0; 10], respectively. Oth-
erwise, the plots are produced in the same way as in Figure 1.

different in different trials we expect the number of excluded blogki depend on
the trial.

The effect of incorporating the feature selection specified by (22) is clearly seen
in terms of more rapid decrease of the asymptotic misclassificatioriRisk the
selective BN classifier with increasing the sample size for bl (u) andy? dis-
tributions, (middle panel in both figures, dashed lines) evés is small, i.e. when
the small portion of low-informative blocks is excluded. The decrease of the misclas-
sification risk measured ds- % for the selective BN model versus the model without
selection is demonstrated by the histogram in figures 1 and 2 (bottom panel). For both
cases of the distributioH (), the selective BN reveals noticeably (up to 20%) lower
asymptotic misclassification rate than that for the classifier without selection.

5 Conclusion

We have presented a theoretically justified subset selection approach which is based
on the idea of defining a probabilistic distance measure of the separation score of
a set of feature nodes for the augmented BN classifier. Feature selection was de-
veloped as an extension of the weighted BN classifier, where weight-functions are
viewed as inclusion-exclusion factors. The optimization of the selection procedure
was based on minimizing the misclassification risk and is combined with estimating

12



the unknowns for a given network structuge therebyijointly taking into account

the high-dimensionality effects. The calculations were shown to be feasible in the
context of augmented BN model for different augmenting ordeand when classi-

fiers are defined as a discriminant score of the local class-conditional densities sat-
isfying rather mild regularity conditions. The selective BN classifier has shown to
achieve a better general performance accuracy in a high-dimensional framework. We
have developed an algorithm that approximates our theoretical model and present ex-
perimental results which support the contention that the proposed feature selection
scheme does substantially improve classification performance of the augmented BN
model for different griori assumptions about the block separation properties.
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