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Abstract

We study the one-way random effects model of Chow & Tse (1991) with
homogeneous intra subject coefficient of variation and deal with the
problem of estimation of the basic parameters. We propose and study
properties of the inter variability along the lines of Mathew, Sinha &
Sutradhar (1992). We also study properties of an appropriate Bayes
estimator.
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1 Introduction

In this paper an interesting repeated measurements model is investigated. It
is of great use when modelling many biological processes where the variance is
coupled to the mean, violating the standard assumption of a constant variance.
To overcome some of the difficulties with a non-constant variance one often
log-transforms data. However, instead of assuming a constant variance it is in
many cases realistic to use a constant coefficient of variation and this is the
basic ingredient in the present model. In the context of an assay validation or
an instrument validation process, Chow & Tse (1991) and Yang & HayGlass
(1993) proposed the model. One may classify the model as a one-way random
effects model with homogeneous intra subject coefficient of variation. Denoting
by yij the jth observation of the ith subject (j = 1, . . . , ki, i = 1, . . . , n), the
model is given by

yij = zi + εij , (1)

where z’s are independent normal with mean µ and variance σ2, and condi-
tionally given z’s, ε’s are independent normal with mean 0 and variance δ2z2

i .
Obviously the above model can also be written in the form of a product model
as

yij = zivij , (2)

where v’s are independent of z’s, and normally distributed with mean 1 and
variance δ2. In this context the z’s which are unobserved like the ε’s are
called latent variables. The parameter δ represents the coefficient of varia-
tion. Although the joint distribution of y’s is not readily available in a closed
form and far from being normal, some elementary estimates of the three basic
parameters µ, σ2, δ can be derived.

2 Background

Let

ȳi =
∑ki

j=1 yij/ki,

ȳ =
∑n

i=1 kiȳi/k• ,

BSS =
∑n

i=1 ki(ȳi − ȳ)2,
WSS =

∑n
i=1

∑ki
j=1(yij − ȳi)2,

(3)

where k• =
∑n

i=1 ki.
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Define

k2• =
∑n

i=1 k2
i ,

k3• =
∑n

i=1 k3
i ,

Ξ = (µ2 + σ2)2,
Ψ = σ2(µ2 + σ2).

(4)

Then the following results on moments of some elementary statistics can be
derived.

Proposition 1.

(a) E(ȳi) = µ, V ar(ȳi) = σ2 + δ2(σ2 + µ2)ki,

(b) E(BSS) = (n− 1)δ2(σ2 + µ2) + σ2(k•−
k2•

k•
),

(c) E(WSS) = (k•− n)δ2(σ2 + µ2),

(d) E(BSS2) = δ4

{
(n2 − 1)Ξ + 12(n− 2 +

k2•

k2
•

)Ψ− 6(n− 2 +
k2•

k2
•

)σ4

}

+δ2

{
2(n + 1)(k•−

k2•

k•
)Ψ +

12
k2•

(k3
•− 2k•k2•+ k3•)σ

4

}

+{k2
•−

4k3•

k•
+

3(k2• )
2

k2
•

}σ4,

(e) E(WSS2) = δ4

{
(k•− n)(k•− n + 2)Ξ + (k2•− n)(4Ψ− 2σ4)

}
,

(f) E(BSS ·WSS) = δ4

{
(n− 1)(k•− n)Ξ + (k•− n + 1− k2•

k•
)(4Ψ− 2σ4)

}

+δ2

{
(k2
•− nk•− k2•+

nk2•

k•
)Ψ + 2(k2•− k•+

k2•

k•
− k3•

k•
)σ4

}
.

Although naive and moment estimators of the three parameters have been
suggested in the literature (Tsang, 1998) and a relative comparison based
entirely on simulation has been carried out, so far no exact expressions for
bias and variance of these estimators are available. Tsang (1998) also derived
the MLEs of the parameters based on the EM algorithm. The naive estimators
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are given by

δ̂naive =
[ n∑

i=1

kis
2
i

k• ȳ
2
i

]1/2

,

µ̂naive = ȳ, (5)

σ̂2
naive =

BSS

k•
,

where s2
i =

∑ki
j=1(yij − ȳi)2/ki. The moment estimators of µ is the same as in

(5), and those of σ2 and δ2 are given by

σ̂2
mom =

(
k• −

k2•

k•

)−1

(n− 1)
(

BSS

n− 1
− WSS

k• − n

)
, (6)

δ̂mom =
(

WSS

(k• − n)(µ̂2 + σ̂2)

)1/2

. (7)

It may be mentioned that the above estimators are based on parts (a)− (c)
of Proposition 1. It should also be noted that σ̂2

mom can take negative values
with a positive probability. Following Chow & Shao (1988), one can use the
modified truncated version given by

σ̂2
mom/tr =





(
k• −

k2•

k•

)−1

(n− 1)
(

BSS

n
− WSS

k• − n

)
for BSS >

n + 1
k• − n

WSS,
(
k• −

k2•

k•

)−1

(n− 1)
BSS

n(n + 1)
for BSS ≤ n + 1

k• − n
WSS.

There are several objectives of this paper. Following Mathew, Sinha &
Sutradhar (1992), in Section 3 we derive a quadratic estimator of σ2 of the form
aBSS+bWSS which has a uniformly smaller mean squared error compared to
σ̂2

mom. Details of the derivation are shown in the balanced case, i.e. when k1 =
. . . = kn = k, and an outline is given in the general unbalanced case. In Section
4 we provide another set of estimators based on a heuristic moment method.
Although the estimators are not explicit, a numerical evaluation for any given
data set can be performed. Furthermore, in Section 4 we provide a Bayesian
perspective of the problem and derive appropriate conditional densities in
order to obtain Bayes estimators of the parameters. A comparison of the
proposed estimators with the existing estimators in terms of bias and mean
squared errors is briefly presented in Section 5.
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3 Improved estimator of σ2

Following parts (d)− (f) of Proposition 1, the variance of the moment estima-
tor σ̂2

mom of σ2 can be shown to be equal to

V ar(σ̂2
mom) = E{(σ̂2

mom − σ2)2} = E(σ̂4
mom)− σ4

=
(n− 1)2(
k• − k2•

k•

)2 E

{
BSS2

(n− 1)2
+

WSS2

(k• − n)2
− 2

BSS ·WSS

(k• − n)(n− 1)

}
− σ4

=
(

k• − k2•

k•

)−2(
δ4

{[
2(n− 1)(k• − 1)

k• − n

]
Ξ +

[
12k2•

k2
•

+ 12n− 24

+
4(n− 1)
(k• − n)2

(
−3n(n− 1)− 2k• (k• + 1− 2n) + k2• (1 + n)− 2nk2•

k•

)]
Ψ

−
[
6k2•

k2
•

+ 6n− 12 +
2(n− 1)
(k• − n)2

(
−3n(n− 1)− 2k• (k• + 1− 2n)

+k2• (n + 1)− 2nk2•

k•

)]
σ4

}
+ δ2

{[
k2
• − k2• − nk• +

nk2•

k•

]
2Ψ

k• − n

+
[
k• (3k• − 2n− 1)− 5k2• − nk2• +

5nk2•

k•
+

k3•

k•
(n + 2)− k2•

k•

]
σ4

k• − n

}

+
{

k2
• −

4k3•

k•
+

3(k2• )2

k2
•

}
σ4

)
− σ4

which we have written in powers of δ and where Ξ and Ψ were defined in (4).
For the balanced model we get

V ar(σ̂2
mom) =

1
k2

E

{
BSS2

(n− 1)2
+

WSS2

(k• − n)2
− 2

BSS ·WSS

(n− 1)(k• − n)

}
− σ4

=
δ4

k2

{
2(kn− 1)

(k − 1)n(n− 1)
Ξ +

4k

(k − 1)n
(2Ψ− σ4)

}

+
δ2

k2

{
4k

n− 1
Ψ +

8k

n
σ4

}
+

{
2

n− 1
σ4

}
. (8)

We propose σ̃2 = aBSS + bWSS as a rival estimate of σ2 and derive
values of a and b such that MSE(aBSS + bWSS) is uniformly smaller than
V ar(σ̂2

mom), for all µ, σ2 and δ2. Using parts (d)− (f) of Proposition 1 we
first evaluate MSE(σ̃2) and arrange terms in powers of δ. This is given below
for the balanced case. It can be seen that only even powers of δ appear in this
expression as in V ar(σ̂2

mom).

4



Proposition 2. The MSE(σ̃2) for the balanced case is given by

MSE(σ̃2)=MSE(aBSS + bWSS) = E(aBSS + bWSS − σ2)2

=δ4

{
a2[(n2 − 1)Ξ + 6

(n− 1)2

n
(2Ψ− σ4)]

+ b2[(k − 1)n(kn− n + 2)Ξ + 2n(k2 − 1)(2Ψ− σ4)]

+2ab[(k − 1)n(n− 1)Ξ + 2(k − 1)n(n− 1)(2Ψ− σ4)]
}

+δ2

{
[a2[2k(n2 − 1)Ψ +

12k
n

(n− 1)2σ4]

+2ab[k(k − 1)(n− 1)(nΨ + 2σ4)]− 2(a(n− 1) + b(k − 1)n)Ψ
}

+
{

[a2k2(n2 − 1)− 2ak(n− 1) + 1]σ4

}
. (9)

Now a and b are chosen so that (9) becomes smaller than (8). Taking δ ar-
bitrarily small and comparing, i.e. comparing the terms which are independent
of δ a necessary condition on a is given by

a2k2(n2 − 1)− 2ak(n− 1) + 1 ≤ 2
n− 1

. (10)

Choosing a to minimize the quadratic function in the left hand side of (10)
yields

aopt =
1

k(n + 1)
. (11)

Taking δ arbitrarily large and comparing the leading terms in the coefficients
of δ4 in (8) and (9), a necessary condition on a and b is given by

a + (k − 1)b = 0. (12)

Taking
bopt = − aopt

k − 1
(13)

we now prove the following main result.

Theorem 1 MSE(aoptBSS+boptWSS) is uniformly smaller than MSE(σ̂2
mom).

Proof: We prove in the Appendix that (i) the terms of δ4 in (9) are uniformly
smaller than the corresponding ones of δ4 in (8), and (ii) the terms of δ2 in
(9) are uniformly smaller than those of δ2 in (8).
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The improved quadratic estimator of σ2 is given by

σ̃2 =
BSS

k(n + 1)
− WSS

k(k − 1)(n + 1)
. (14)

A similar but much more involved argument in the unbalanced case reveals
that proper values of a and b are given by

Theorem 2

aunb =
k• −

k2•

k•

k2
• −

4k3•

k•
+

3(k2• )
2

k2
•

, (15)

bunb = − aunb

k̄ − 1
, (16)

where k̄ = n−1
∑n

i=1 ki.

Obviously, the above expressions reduce to (11) and (13) in the balanced
case.

4 Heuristic and Bayesian estimators

In this section we propose some heuristic estimators of the three parameters in
the unbalanced case. Noting parts (a) and (c) of Proposition 1, which clearly
reveal that ȳi’s have unequal variances in the unbalanced case, we propose the
following three equations in the three unknowns µ, σ2, δ:

µ =
∑n

i=1 kiȳi[kiσ
2 + δ2(µ2 + σ2)]−1

∑n
i=1 ki[kiσ2 + δ2(µ2 + σ2)]−1

, (17)

n∑

i=1

ki(ȳi − µ)2

[kiσ2 + δ2(µ2 + σ2)]
= n− 1, (18)

WSS = (k• − n)δ2(µ2 + σ2). (19)

Plugging in (19) into (17) and (18) results in the following two simpler equa-
tions in µ and σ2:

µ =

∑n
i=1 kiȳi

(
kiσ

2 +
WSS

k• − n

)−1

∑n
i=1 ki

(
kiσ2 +

WSS

k• − n

)−1 , (20)

6



n∑

i=1

ki(ȳi − µ)2

kiσ2 +
WSS

k• − n

= n− 1. (21)

It should be mentioned that in the balanced case the above equations are the
same as those given by Tsang (1998).

Let Y = (yij , j = 1, . . . , ki, i = 1, . . . , n), Z = (z1, . . . , zn), θ = (µ, σ2, δ).
Assuming non-informative priors, the joint density of (Y, Z, θ) is given by

f(Y, Z, θ)

∝ (σ2)−n/2−1δ−k•−1

( n∏

i=1

z−ki
i

)
exp

{
− 1

2δ2

n∑

i=1

ki∑

j=1

(
yij

zi
− 1

)2

− 1
2σ2

n∑

i=1

(zi − µ)2
}

.

Since it is difficult to integrate out the latent variables Z to get the joint
density of (Y, θ) and hence the posterior density of θ given Y , we consider the
posterior of θ conditional on the augmented data (Y, Z). To get the Bayes
estimator of θ, i.e. E(θ|Y ), Markov Chain Monte Carlo Methods such as the
Gibbs sampler or the data augmentation algorithm can be used.

Given (Y, Z), we have

f(θ|Y, Z) ∝ δ−k•−1 exp
{
− 1

2δ2

n∑

i=1

ki∑

j=1

(
yij

zi
− 1

)2}
(σ2)−n/2−1 exp

{
− 1

2σ2

n∑

i=1

(zi − µ)2
}

.

Therefore given (Y,Z), δ and (µ, σ2) are conditional independent. The condi-
tional densities are given by

f(δ|Y, Z) ∝ δ−k•−1 exp
{
− 1

2δ2

n∑

i=1

ki∑

j=1

(
yij

zi
− 1

)2}
,

f(µ, σ2|Y, Z) ∝ (σ2)−n/2−1 exp
{
− 1

2σ2

n∑

i=1

(zi − µ)2
}

= (σ2)−n/2−1 exp
{
− 1

2σ2

n∑

i=1

(zi − z̄)2
}

exp
{
− n

2σ2
(µ− z̄)2

}
.

Integrating out µ in the second expression we get

f(σ2|Y, Z) ∝ (σ2)−
1
2 (n+1) exp

{
− 1

2σ2

n∑

i=1

(zi − z̄)2
}

,

7



and hence

f(µ|σ2, Y, Z) ∝ exp
{
− n

2σ2
(µ− z̄)2

}
.

From the above expressions we can see that given the augmented data (Y,Z),
the distribution of θ is simple and it is very easy to generate θ by observing

δ|Y,Z
∼=

√√√√
n∑

i=1

ki∑

j=1

(
yij

zi
− 1

)2

/χ2
k•

,

σ2|Y,Z
∼=

n∑

i=1

(zi − z̄)2/χ2
n−5,

f(µ|σ2, Y, Z) ∝ exp
{
− n

2σ2
(µ− z̄)2

}
.

Now consider the conditional density of Z given (Y, θ),

f(Z|Y, θ) ∝
( n∏

i=1

z−ki
i

)
exp

{
− 1

2δ2

n∑

i=1

ki∑

j=1

(
yij

zi
− 1

)2

− 1
2σ2

n∑

i=1

(zi − µ)2
}

=
n∏

i=1

{
z−ki
i exp

{
− 1

2δ2

ki∑

j=1

(
yij

zi
− 1

)2

− 1
2σ2

(zi − µ)2
}}

.

Therefore zi, i = 1, . . . , n, are conditionally independent given (Y, θ). The
individual densities are given by

f(zi|Y, θ) ∝ z−ki
i exp

{
− 1

2δ2

ki∑

j=1

(
yij

zi
− 1

)2

− 1
2σ2

(zi − µ)2
}

.

Using a suitable acceptance rejection algorithm we can generate zi via
f(Z|Y, θ). Alternatively, since zi is one-dimensional we can by applying nu-
merical integration draw from the distribution of zi. Therefore we can draw
from f(θ|Y, Z) and f(Z|Y, θ) easily.

5 Comparisons of some of the proposed estimators

Before making any comparison between the new estimator σ̃2 and σ̂2
mom bias

has to be investigated.

8



Theorem 3 For the improved quadratic estimator given in Theorem 1

Bias = E(σ̃2)− σ2 = E

(
BSS

k(n + 1)
− WSS

k(k − 1)(n + 1)

)
− σ2

= − δ2µ2

k(n + 1)
+ σ2

(
− δ2

k(n + 1)
+

n− 1
n + 1

)
− σ2

= − δ2µ2

k(n + 1)
− σ2

(
δ2

k(n + 1)
+

2
n + 1

)
. (22)

From Theorem 3 it follows that Bias < 0 for all µ and δ, i.e. σ̃2 underes-
timates the parameter σ2. If n → ∞ then Bias → 0. For large k it follows
from (23) that Bias is solely a function of σ2. It is interesting to compare σ̃2

and σ2
mom.

Theorem 4 In the balanced case it follows that

σ̂2
mom =

BSS

k(n− 1)
− WSS

k(k − 1)n
=

1
k(n− 1)

(
BSS − WSS

k − 1
+

WSS

n(k − 1)

)
,

σ̃2 =
BSS

k(n + 1)
− WSS

k(k − 1)(n + 1)
=

1
k(n + 1)

(
BSS − WSS

k − 1

)

and thus σ̃2 < σ̂2
mom.

If bias is strong then σ̃2 is meaningless to use. Furthermore, one may ques-
tion the use of the model if σ2 is small in comparison to δ2, i.e.Zi does not vary
much. We have performed a number of simulations and σ̃2 performs better
than both σ̂2

mom and its truncated version σ̂2
mom/tr. However, this result is only

valid if both σ̂2
mom and σ̃2 are positive and bias is not severe. Unfortunately

we were not able to explicitly calculate the bias of σ̂2
mom/tr.

Turning to a comparison with the Bayesian estimator we first note that
there is a different basis on which the Bayesian paradigm relies and thus
comparisons are not fully interpretable. In any case, in our simulations, if
data indicates a clear variation in Zi the Bayesian estimator based on MCMC
methodology performs somewhat better than the others. On the other hand
the computations are cumbersome, even with only three parameters. The
other estimators are working better when the variation in Zi becomes small
or δ2 becomes larger. With a more sophisticated Bayesian program some of
the drawbacks may be reduced.
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Appendix

Here is given a proof of Theorem 1, i.e. (8) and (9) are compared. It will be
shown that (9) is uniformly smaller than (8) with respect to the parameters
Ξ, Ψ and σ4. We start by studying the terms of δ4. First the terms for Ξ are
compared, i.e. we are going to show that

2kn

k − 1
− 1

(n + 1)2
≤ 2(nk − 1)

n(k − 1)(n− 1)

which is equivalent to

2nk ≤ k − 1 +
2(n + 1)2(nk − 1)

n(n− 1)
.

The right-hand side equals

k − 1 + 2(nk − 1) +
4(nk − 1)

n− 1
+

2(n + 1)(nk − 1)
n(n− 1)

≥ 2nk + k − 1− 2 + 4 ≥ 2nk.

Now we study the terms of (2Ψ− σ4):

1
(n + 1)2

[
2
n

(n− 1)(n− 3) +
2(k + 1)n

k − 1

]
≤ 4k

n(k − 1)

which is equivalent to

(n2 − 4n + 3)(k − 1) + n2(k + 1) ≤ 2k(n + 1)2

and by expanding the brackets it is immediately seen that this is true.
It will be verified that the terms of δ2 in MSE(σ̃2) are less or equal to the

coefficient of δ2 in MSE(σ̂2
mom) for all Ψ and σ4, i.e. the following inequality

holds:

a2{2k(n2 − 1)Ψ +
12k

n
(n− 1)2σ4}+ 2ab{k(k − 1)(n− 1)(nΨ + 2σ4)} −

− 2{a(n− 1) + bn(k − 1)}Ψ ≤ 4k

n− 1
Ψ +

8k

n
σ4,

where a and b are given by (11) and (13), respectively. For the terms connected
to Ψ we have to show that

2(n2 − 1)
(n + 1)2

− 2(n− 1)n
(n + 1)2

− 2(n− 1)
n + 1

+
2n

n + 1
≤ 4

n− 1

10



which is equivalent to
4n

(n + 1)2
≤ 4

n− 2

which is true for all n. For the coefficient σ4 it can easily be shown that for
all n

12(n− 1)2

n(n + 1)2
− 4(n− 1)

(n + 1)2
≤ 8

n

holds.
Finally it follows from (8) and (9) that we have to show that

n2 − 1
(n + 1)2

− 2(n− 1)
n + 1

+ 1 ≤ 2
n− 1

which by some manipulations is shown to be equivalent to

1 ≤ n + 1
n− 1

.
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