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Abstract

Methods for analysing coefficients of variation in normally distributed
data are studied. An approximate F-test for equality of two coefficients
of variation is introduced. The approximate F-test is compared with
eight other tests in a simulation study. The new test performs well, also
when the sample sizes are small. A generalized version of the approx-
imate F'-test is defined for the case that there are several independent
estimates of each coefficient of variation, calculated with different aver-
ages. The test is applied to a real immunoassay dataset from diagnostic
research. All moments of the proposed test statistic are shown to be
approximately equal to the moments of an F-distribution. The distri-
bution of the logarithm of the test statistic equals the distribution of
the logarithm of an F- distribution plus some error variables that are in
probability of small orders.

Key words: coefficient of variation, normal distribution, McKay’s approximation, approx-
imate F-test
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1 Introduction

In statistical theory the second moment of the mean is a convenient measure
of dispersion. When the observations y1,y2, ..., yn are normally distributed it
is usually estimated by the sample variance s2, defined by
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The standard deviation s is a measure of the variability in the original scale.
In many problems it is, however, necessary to go one step further and relate
the variation to the level of the observations. If the standard deviation is e.g.
25 it may possibly be small if the average is 1000, but large if the average is
100. For this reason variability in data is often summarised by the coefficient
of variation

c=_. (2)

The coefficient of variation is a ratio between two outcomes of random
variables. Theoretically this measure of dispersion is not as convenient as the
variance, but from a practical point of view it provides useful information. In
many fields of interest, often in biological and medical research, the coefficient
of variation is preferred to the variance or standard deviation.

Pearson (1896) defined the coefficient of variation and used it for compar-
ison of various measurements on females with corresponding measurements
on males. Schimmerl-Metz et al. (1999) provide a modern example from
morphology. They calculate coefficients of variation on measurements of the
scapholunate joint intercortical width of wrists.

In laboratory analytical procedures the standard deviation of repeated mea-
surements are often proportional to the concentration being measured. The
precision of an analytical method is usually described by coefficients of varia-
tion between and within assays. DeSilva et al. (2003) accordingly recommend
that precision shall be expressed by coefficients of variation. Comparing the
performance of e.g. two laboratories or two instruments thus involves the
problem of comparing two coefficients of variation.

In clinical trials not only the average effect of a treatment but also the
variation in the effect is considered. It is not always appropriate to assume
independence between effect size and variance. Often data indicate a constant
coefficient of variation. In crossover trials treatments are compared within
individuals. An individual is first given one treatment, and then a second



treatment and so on. Sometimes each individual receives each treatment sev-
eral times. The individuals may respond very differently on the treatments,
and the standard deviation in the replicated measurements is often propor-
tional to the response. In this case the coefficient of variation is a natural
measure of dispersion. The Food and Drug Administration (2001) establish
that coefficients of variation shall be reported in bioequivalence studies.

The reaction time of a task may differ much between a group of patients
and a control group. The coefficients of variation may, however, be similar or
equal in the two groups (Schafer and Sullivan, 1986).

Despite the large number of applications the properties of the coefficient of
variation are seldom discussed in statistical textbooks. As a consequence there
is among practitioners often an inadequate knowledge on how to make proper
statistical inference concerning the measure. We shall in this article bring some
light on the subject in general and particularly discuss statistical tests for the
coefficient of variation when the observations are normally distributed. Many
approximate tests have been suggested for the hypothesis that two coefficients
of variation are equal. They are however not well known, and maybe for this
reason coefficients of variation are often reported in scientific work without
any use of statistical methods. The present article compares eight proposed
methods with a new approximate F-test in a simulation study. This study
should help the researcher to choose a test for the comparison of two coefficients
of variation.

We shall see that all moments of the approximate F-test statistic are close
to the moments of an F-distributed random variable. The distribution of the
logarithm of the test statistic approximately equals the distribution of the
logarithm of an F-distributed random variable. The test is easily generalized
to the case that there are several estimates per coefficient of variation. We shall
show by a real data example from diagnostic research how the approximate F-
test and its generalized version can be applied. We shall also suggest a method
for the problem considered by Tian (2005) of making inference for an a priori
common coefficient of variation.

2 Inference on a single coefficient of variation

Let y; = u + e;, where e; are independently distributed N(0,v%u?),j =
1,2,...,n, with positive population coefficient of variation v and positive ex-
pected value pu. Let m denote the average as defined in (1), ¢ the sample
coefficient of variation as defined in (2).



In the well-known t-test of the hypothesis that the expected value of a
normally distributed random variable equals zero, the test statistic

m__n
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is t distributed with n — 1 degrees of freedom under assumption that the hy-
pothesis is true. Generally ¢ follows a noncentral ¢ distribution with n — 1
degrees of freedom and noncentrality parameter 7 = /n/vy. Owen (1968)
discusses this and other applications of the noncentral ¢ distribution. With
modern statistical software the percentiles of the noncentral ¢ distribution are
accessible and it is easy to test the hypothesis that 7, and thus also 7y, equals
a specified value. A confidence set for 7 can be constructed by inverting the
acceptance region of a test of the hypothesis about 7 (Shao, 2003). Thus, if
Pr(t < v/n/c|7=7)=«a/2 and Pr(t > \/n/c| T =) = a/2 then [, 7]
is a 100(1 — )% confidence interval for 7. An exact finite confidence interval
for « is easily obtained from the confidence interval for 7 provided that the
latter does not include zero, which it seldom does. The exact finite confidence
interval is [\/n/m1,v/n/72].

If the percentiles of the noncentral ¢ distribution are not available there
are several ways to calculate approximate confidence intervals. McKay (1932)
shows that if 7 is small, i.e., less than 1/3, and if 6 = (n — 1)/n, then

t
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is approximately x? distributed with n — 1 degrees of freedom. Note that in
applications the condition v < 1/3 is often reasonable since it makes negative
observations unlikely. The condition is fulfilled when the observations are
necessarily positive though well described by the normal distribution. This
is often the case when measuring, e.g., length, mass, time, blood pressure
or concentration. Fieller (1932), Pearson (1932), Iglewicz and Myers (1970)
and Umphrey (1983) all confirm the adequacy of McKay’s x? approximation.
Since (3) is an approximate pivotal quantity (Shao, 2003) it can be used as
an approximate test for the hypothesis that v = ~g, where 7y is a specified
constant, or for calculating an approximate confidence interval.

Vangel (1996) proposes a small modification of McKay’s approximation
useful for calculating approximate confidence intervals that are accurate also
for small sample sizes. The confidence interval based on this approximation
can be written

(n—1) 3)
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where u1 denote the 100(1 — a/2):th percentile of a x? distribution with n — 1
degrees of freedom, and where us denote the 100(a/2):th percentile of a x? dis-
tribution with n — 1 degrees of freedom. Another approximate method, devel-
oped by Wong and Wu (2002), for calculating confidence intervals is based on
the modified signed log likelihood ratio statistic defined by Barndorff-Nielsen
(1986, 1991). This method is also claimed to give accurate results in case of
small sample sizes.

There is a strong tradition among statisticians to use the logarithmic trans-
formation when the standard deviation is proportional to the mean. A Taylor
series expansion of logy about y = p gives

1
logy ~ log p + ;(y — ),

so that Var(logy) ~ Var(y)/u?. Thus the standard deviation in log scale
roughly equals the coefficient of variation in the original scale. In terms of
changes in p the logarithmic transformation is variance stabilising when the co-
efficient of variation in the original scale is constant. After having transformed
all data into log values the statistical analyst often proceeds by modelling an
expected value under assumption of a normally distributed error term. This
additive error is normally distributed in log scale. In the original scale the er-
ror is multiplicative with a lognormal distribution. The lognormal distribution
is however not symmetric, but positively skewed. The final analysis does for
this reason not conform to an initial assumption of a symmetric distribution
with approximately normally distributed errors. In e.g. blood test systems the
measurement errors, detected by measuring the same blood sample repeatedly,
are often approximately normally distributed as a result of approximately nor-
mally distributed error sources such as variation in pipetted volume.

3 Review of tests for equality of two coefficients of
variation
Various test statistics have been proposed for the hypothesis that two coeffi-

cients of variation are equal. The most well known are collected in this section.
We investigate their performances in Section 6.



Let yij = p; + €55, where e;; are independently distributed N(0,v2pu2),i =
1,2 and 5 = 1,2,...,n;, with positive population coefficients of variation ~;
and positive expected values p;. Let ¢; and m; denote the sample coefficient
of variation and the average in sample ¢, respectively. We study tests of the
null hypothesis Hy : 71 = y2 of equal population coefficients of variation.

3.1 Likelihood ratio test

Several authors explore the likelihood ratio test of the hypothesis. Miller and
Karson (1977) and Bhoj and Ahsanullah (1993) deal with the special case
of equal sample sizes. Lohrding (1975), Bennett (1977) and Doornbos and
Dijkstra (1983) consider the general case of unequal sample sizes. According
to Gerig and Sen (1980), the maximum likelihood estimates of 1, po and 7

are
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respectively, where p = (n1 + n2)c? + ng, ¢ = —(2na2c? + 2nz — n1)msy and

r=(n3(c? +1) —n}(c3 +1))m3/(n1 + n2). The likelihood ratio test statistic
can be written

1(3f1)? 2(Yfi2)?
R=—2log\=n1 1 , 6
og n1 log (- l)c%m% + no og( — l)c%m% (6)

where X is the likelihood ratio. Asymptotically R is x? distributed with 1
degree of freedom.

3.2 Bennett’s test

Bennett (1976) utilise McKay’s approximation (3) and applies a test accord-
ing to Pitman (1939) of the hypothesis of equal scale parameters of gamma
variables. Shafer and Sullivan (1986) note that Bennett by mistake uses a
variance with devisor n — 1 where McKay (1932) uses a variance with devisor
n. For this reason they modify Bennett’s test correspondingly. The modified



Bennett’s test statistic is
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where 0; = (n;—1)/n;,i = 1,2. The value of the test statistic shall be compared
with a x? distribution with 1 degree of freedom.

3.3 Miller’s test

When there are many observations, the sample coefficient of variation has
an approximate normal distribution. Miller (1991) gives a test based on this
asymptotic normality. The population coefficient of variation v is estimated
by a weighted average, yw = ((n1 — 1)e1 + (n2 — 1)c2)/(n1 + n2 — 2). This
estimate is employed in the calculation of a test statistic

C1 — C2
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which shall be compared with a standard normal distribution. Feltz and Miller
(1996, 1997) give more information about this test.

3.4 Wald test

Rao and Vidya (1992) give the Wald statistic for the case of equal sample sizes.
Gupta and Ma (1996) modify it to the general case of unequal sample sizes.
The test statistic

(c1 —c2)?
W=——0—3 a 9)
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is approximately x? distributed with 1 degree of freedom. This test statistic is
obviously closely related to Miller’s statistic (8). Bhoj and Ahsanullah (1993)
give a third statistic on the same theme, but only for the case of equal sample
sizes.



3.5 Score test

Gupta and Ma (1996) derive the score test, based on the maximum likelihood
estimates (5). Its explicit value is given by

1 2 2
S = ( fh%) <“1+“2>, (10)
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where

The test statistic (10) shall be compared with a x? distribution with 1 degree
of freedom.

3.6 Doornbos and Dijkstra’s test

Doornbos and Dijkstra (1983) develop a test based on the distribution of the
inverse of the sample coefficient of variation. Let b; = 1/¢;, by = (n1by +
naba)/(n1 + n2). The total sum of squares T = nq (b1 — by)? + na(by — by)?
is sensitive to deviations from the null hypothesis. Doornbos and Dijkstra
estimate the expectation of T' by

E[T] _ na2(ny — 1) ny(ng — 1)
(n1 +n2)(n1 —3)  (n1+n2)(ng —3)
1 ning(ny —1)  ning(ng —1) 9 o 5 o )
c2(n1 +na) ( ny —3 + ng — 3 +niet +nae; — (nie1 + naes)
where
(n1—1) (n2—1) i—
2 nln?ig + nznZig =1 L[5 2] 19
Cp = b2 b2 — ni—1 no—1" € = 9 T ni—171° =1, 2
107 1 N2t n1*3+n2*3 [ 2 ]
The test statistic
T
= Fo (11)
E(T)

is approximately x? distributed with 1 degree of freedom.



3.7 Log test

A test based on the logarithmic approach discussed in Section 2 can be made
in the following way. Take the logarithm of all observations and calculate the
standard deviation sy in sample 1 and the standard deviation sy in sample
2. Then compare
2
s
L=-4 (12)
s
L2
with an F-distribution with n; — 1 and ny — 1 degrees of freedom.

3.8 Naive test

With the “naive" test the sample coefficients of variation are compared by an
F'-test in the same way as standard deviations are compared, that is,

N=2 (13)

is compared with an F-distribution with n; —1 and ny — 1 degrees of freedom.

4 An approximate F-test for equality of two coeffi-
cients of variation

4.1 The approximate F-test

In the previous section we reviewed eight tests for the hypothesis of equal
coefficients of variation. Many of them require large sample sizes. When
the numbers of observations are not large it is not clear which test should be
preferred. For this reason we now introduce an approximate F-test plausible to
work well also for small sample sizes. It is natural to look for an F-test, since
such tests are used for comparing variances. The ordinary test statistic for
comparing two variances is the ratio between the two variances. If we, for the
comparison of two coefficients of variation, analogously take the ratio between
the two coefficients of variation we get the naive test (13). This test does not
take into account the variation in the estimated averages in the denominators
of the coeflicients of variation. Therefore it is reasonable to suppose that it is
better to build the test on McKay’s transformation (3). According to McKay
(1932),

ci/(1+ 0ic)
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is approximately x? distributed with n; — 1 degrees of freedom when 6; =
(n; — 1)/n;. The only requirement is that the coefficients of variation are
smaller than 1/3, which is fulfilled when negative observations are unlikely.
Consequently we can, if Hg : 71 = 72 is true, anticipate

_ /(1 +6:cf)

—c2/(1+ 6acd) (14)

to be approximately F-distributed with n; —1 and ng — 1 degrees of freedom.
The statistic F' is an increasing function of ¢; and a decreasing function of ca.
Large deviations between c; and co result in large deviations of F' from one.
Thus F' is a plausible test statistic for the hypothesis of equal coefficients of
variation.

4.2 The distribution of the test statistic

For inference it is essential that F'is approximately F-distributed. We assume
that this is the case because F is a quotient between two x? approximations
divided by their degrees of freedom. We can, however, not take it for granted,
and will therefore investigate the properties of F' analytically. We shall compare
the distribution of F' with the distribution of an F-distributed random variable
X with n; — 1 and ng — 1 degrees of freedom. The comparison shall be made
under the assumptions that the measurements are normally distributed and
that the null hypothesis of equal coefficients of variation is correct. We shall
see that all moments of F' are close to the moments of X if only the coefficient
of variation is sufficiently small.

Let W; and W denote independent 2 distributed random variables di-
vided by their degrees of freedom, let X = Wy /Wo, and let Z; and Z denote
independent standardized normal random variables. The distributions of the
sample averages m; and the standard deviations ¢;m; equals the distributions
of ui+ni—1/ 2Z¢ iy and Wil/ 2 i~y respectively. Thus the distribution of ¢7 equals
the distribution of

Ziy\ 2
Wiy (1+ : ) , =12, (15)
which inserted in (14) gives
1 (1 Zavy 2 ng—1_2
am U Tym) T

F 3 ,
1 4 —1
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where d denotes equality in distribution. By a Taylor series expansion of F' to
a power of r, about v =0,

1 — Z2 Z1
FEIF"] = FE[X" ZE |2 _1)(7‘1 L2 L1
7] X7+ [m ) <\/TT ﬁ)
72 Iy 72 1 1
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where X = W; /W5 is an F-distributed random variable with n; —1 and ng —1
degrees of freedom. From the formula for the 7:th moment of X (Kotz and
Johnson, 1983) we notice that

(ng —1)(ng —2r — 1)

E[Xr_l] - (ng —1)(ny + 2r — 3)

E[X"], mng>2r+1.

Furthermore, by the formula for the r:th moment of a x? distributed ran-
dom variable with n — 1 degrees of freedom (Kotz and Johnson, 1982), it can
be shown that

Wit g4 2r -1
E[ L ]: E[XT],
W2

ny — 1
since Wi and W5 are independent. As a result, the r:th moment of F'is, in a
neighbourhood of v = 0,

9 _
r_r) Y+ 0("?), n2>2r+1.

ni n2

E[F"] = E[X"] + 2rE[X"] (

We conclude that the moments are similar when the coefficient of variation is
small, especially if the sample sizes are equal or large.

We also want to compare the distribution of F' with the F-distribution
(i.e., the distribution of X). Since F is a ratio of two independent x? approx-
imations it is, however, more convenient to compare the logarithm of F' with
the logarithm of X. This means that we shall compare the distribution of the
logarithm of F' with Fisher’s z distribution, since originally Fisher (1924) did
not define the F-distribution but the z distribution, which is the distribution
of (log X)/2. Write log F' as

—1,\7" —1,\7"
log F = log c? <1 + c%) —logc3 <1 + 12 c%) . (16)
n n2
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The first term in (16) is by (15)

1 \1!
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Expansion of the last term in (17) yields
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where O, denotes order in probability (Azzalini, 1996). The corresponding

calculations can of course be made also for the second term in (16). Now let U;

and Us be independent x? distributed random variables with nq —1 and no — 1

degrees of freedom respectively, and let Z be an independent standardized

normal random variable. Then log F' can be written

/1 1 1 1
logFilogX +2\/—+ — Zy+ <U1 - U2) v* + R(n1,n2,7),
ni n9 ni na

where R(ni,n2,v) = Op(max{n;'y? ny'4?,7%}). Note that the dis-
tribution of logF consequently equals the distribution of logX +
Op(max{nl_l/zfy, n2_1/2'y, 7?}). We conclude that the distribution of log F' and
log X are similar especially if the coefficient of variation is small or the sample
sizes are large.

4.3 A generalized approximate F-test

In applications there are often many independent samples from populations
with a common coefficient of variation 7. In a recent article Tian (2005)
addresses the problem of making inference about «+ in this situation. Tian
suggests a repeated sampling method for calculating a generalized probability
value as defined by Tsui and Weerahandi (1989). An easy calculated alternative
is obtained in the following way. Let y;i = u;+e;i, where e, are independently

11



distributed N(0,7%43) with 0 < g and 0 < y < 1/3,j = 1,2,...,r and
k=1,2,...,nj. Then, by (3), with 6; = (n; — 1)/n;,

Sii(ng = 1)e5 /(1 +6;¢5)
72/ (1+72)

is approximately x? distributed with ;nj — 1 degrees of freedom. Thus (18)

(18)

can be used as an approximately x? distributed test statistic for the hypothesis
that the common coefficient of variation equals ~.

We shall also derive a useful extension of the approximate F-test. Let
Yijk = Mij + €ijk, where e;;;, are independently distributed N(O,%Q,u?j) with
0<pijand 0< v <1/3,i=1,2;5=1,2,...,r;and k =1,2,...,n;;. If the
hypothesis Hy : 71 = 72 is true, then by (18)

2
79 L 1 (nlj_l)clj
(ijl n2j 7”2) 2 i1 0,3,

G =
2 )

1 L T2 (n2]471)02j

(Zj:l niy 7“1) Zj:l 71-&-923'6%3-

(19)

with 0;; = (ni; —1)/nij, is approximately F-distributed with »_;n1; —r1 and
> N2 — T2 degrees of freedom.

5 An immunoassay example

Brunnée et al. (1996) compares two methods for measuring concentration of
specific IgE antibodies in blood samples. A new system, ELItest, was com-
pared with the established Pharmacia CAP system (PCS). Among other things
the variations between and within assays were studied. Specific IgE for the al-
lergens mite, cat and birch was measured for 3 sera with very different levels
of concentration. The intra assay coeflicients of variation were calculated on 8
measurements performed on the same day, and the inter assay coefficients of
variation were calculated on 10 measurements made on different days. Brunnée
et al. (1996) perform no hypothesis tests of the coefficients of variation. This
is very representative for studies of precision in diagnostic measuring instru-
ments. Usually no tests are performed, since there is no well-known method
for doing it.

The reported intra assay coeflicients of variation are given in Table 1 to-
gether with calculated approximate F-tests (14). No differences are significant
at level 5%. Observe that this is also true for the third sample of allergen
mite, although the estimate of the coefficient of variation in ELItest (18.6%)

12



Table 1: The approximate F-test (14) applied to intra assay coefficients of
variation (CV) reported by Brunnée et al. (1996)

ELItest CV (%) PCS CV (%)

Allergen (n=28) (n=28) F  P-value
Mite 6.6 9.5 0.485  0.360
Mite 3.3 4.8 0.473  0.345
Mite 18.6 8.3 4.904  0.052
Cat 6.9 10.0 0.478  0.352
Cat 4.5 5.5 0.670  0.610
Cat 4.2 4.6 0.834  0.817
Birch 4.7 9.2 0.262  0.099
Birch 3.8 5.4 0.496  0.375
Birch 4.8 8.2 0.344  0.182

is more than twice as large as the estimate of the coefficient of variation in
Pharmacia CAP System (8.3%). The result is however close to the border of
being significant (p-value 0.052), and it is notable that all other samples show
smaller coefficients of variation in ELItest than in Pharmacia CAP System.

If we assume that each method has a constant intra assay coefficient of
variation we can apply the generalized approximate F-test given in (19). The
hypothesis of equal intra assay coefficients of variation is not rejected, because
G = 1.046 with 63 degrees of freedom in the numerator and 63 degrees of
freedom in the denominator (P-value 0.8597). However, this result is to large
extent dependent on the third sample of allergen mite. If the estimate of the
coefficient of variation in ELItest (18.6%) is considered to be an outlier, maybe
because of suspected errors in the performance of the assay, and accordingly
excluded from the calculation of the hypothesis test the result is clearly sig-
nificant. Then G = 2.285 with 63 degrees of freedom in the numerator and 56
degrees of freedom in the denominator (P-value 0.0020).

Suppose that we require that the intra assay coefficient of variation is
smaller than 10%. Consider the hypothesis that the common intra assay coef-
ficient of variation is 10% in Pharmacia CAP System. The test statistic (18)
equals 36.16, which shall be compared with a x? distribution with 63 degrees
of freedom. In conclusion the intra assay coefficient of variation is significantly
smaller than 10% (P-value 0.0026).

Table 2 includes the inter assay coefficients of variation as reported by

13



Table 2: The approximate F-test (14) applied to inter assay coefficients of
variation (CV) reported by Brunnée et al. (1996)

ELItest CV (%) PCS CV (%)

Allergen (n = 10) (n = 10) F  P-value
Mite 20.1 11.7 2.883 0.131
Mite 16.5 10.1 2.629  0.166
Mite
Cat 26.9 10.3 6.465  0.010
Cat 13.9
Cat
Birch 32.6 15.6 4.073  0.048
Birch 16.5 12.7 1.671 0.456
Birch 174 8.0 4632  0.032

Brunnée et al.(1996) and the corresponding results of the proposed approxi-
mate F-test given in (14). Due to missing values, only 6 comparisons can be
made. Differences are significant at level 5% in 3 cases, all of advantage to the
established system.

Note that the test statistic G given in (19) shall not be applied to the
inter assay coefficients of variation. There are 7 estimates of the inter assay
coefficient of variation in ELItest, but they are not independent since they are
based on the same 10 days. Neither the 6 estimates of the inter assay coefficient
of variation in Pharmacia CAP System are independent.

6 A simulation study

6.1 Objective

We shall by Monte Carlo technique investigate the significance levels and pow-
ers of the tests reported in Section 3 and the approximate F-test (14) intro-
duced in Section 4.1.

6.2 Methods

The following tests were included in the study: the approximate F-test (14),
the likelihood ratio test (6), Miller’s test (8), Bennett’s test (7), Doornbos
and Dijkstra’s test (11), the Wald test (9), the score test (10), the naive test

14



(13) and the log test (12). In each simulation two samples with n; and ng
observations respectively were randomly generated 20 000 times in Release 13
of MATLAB (The Mathworks Inc., Natick, MA, USA). The observations be-
longed to normal distributions with expected values 100 and 1000, and with
coefficients of variation v; and - respectively. The tests were performed with
significance level 5% against the alternative hypothesis of unequal coefficients
of variation, i.e. the tests were two-sided. With the various 72-tests the null hy-
pothesis was rejected when the test statistic was larger than the 95th percentile
of the x? distribution. When using F-tests the null hypothesis was rejected
if the test statistic was smaller than the 2.5th percentile or larger than the
97.5th percentile of the F-distribution. With Miller’s test the null hypothesis
was rejected when the test statistic was smaller than the 2.5th percentile or
larger than the 97.5th percentile of the standard normal distribution.

Four cases were studied. The type I errors of the tests were investigated in
Case 1-3, and the powers of the tests were investigated in Case 4. The first case
had a small coefficient of variation (5%) and equal sample sizes. The second
case had instead a large coefficient of variation (25%), and still equal sample
sizes. The third case had large coefficients of variation but unequal sample
sizes, since ni was fixed to 4. In the fourth case one coefficient of variation
was 5% and the other 10%, and the sample sizes were equal. The size, ns, of
the second sample varied from 2 to 20 in all cases. Thus 19 simulations were
made per case.

6.3 Results

All the tables and figures are attached in the end of the paper.

The results of the simulations according to Case 1 is reported in Table 3
and illustrated in Figure 1. The figure shows that three tests performed well
with regards to type I error: the approximate F'-test, the naive test and the
log test all showed relative frequencies of rejections close to the significance
level 5%. Miller’s test, Bennett’s test and the Wald test worked well when
the sample sizes were not very small. The likelihood ratio test, Doornbos and
Dijkstra’s test and the score test required large sample sizes.

The results of the simulations according to Case 2 is reported in Table 4 and
illustrated in Figure 2. In this case the coefficient of variation was large (25%).
The approximate F-test showed nevertheless almost correct probability of type
I error (5%). The naive test rejected the null hypothesis with a probability
somewhat larger than 5%. The log test, interestingly, did not work in a proper
way. Miller’s test, Bennett’s test and the Wald test behaved well when the
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sample sizes were not very small. The likelihood ratio test, Doornbos and
Dijkstra’s test and the score test required large sample sizes.

The results of the simulations according to Case 3 is reported in Table 5
and illustrated in Figure 3. In this case, with unequal sample sizes and at
least one small sample size (n; = 4) in combination with a large coefficient
of variation, the approximate F-test was the only test that showed nearly
correct probability of type I error (5%). The Wald test, which showed good
performance in Case 1 and Case 2, did not perform well in this case. Neither
did the likelihood ratio test nor Doornbos and Dijkstra’s test. The log test
had too large relative frequency of rejected hypotheses, and the score test had
too small. Miller’s test, Bennett’s test and the naive test worked better, but
not as good as the approximate F'-test.

The results of the simulations according to Case 4 is reported in Table 6
and illustrated in Figure 4. For all tests the powers increased with the number
of observations and reached a level of app. 80% when the sample sizes were
20. The likelihood ratio test showed large power for small sample sizes, but
it also rejected the null hypothesis when it was true, see Figure 1. The score
test and Doornbos and Dijkstra’s test never rejected the hypothesis of equal
coeflicients of variation when the sample sizes were small. Miller’s test and the
Wald test had very small powers when n; = no = 2, otherwise they worked
similar as the approximate F-test, Bennett’s test, the naive test and the log
test.

6.4 Conclusions

The likelihood ratio test, the Wald test, Doornbos and Dijkstra’s test and the
log test all showed poor performance with regard to type I error in at least
one of Case 1-3. For this reason they are not recommended for use. The
results of the score test were not as good as the results of the other tests,
neither considering type I error nor considering power. The naive test worked
similar as the approximate F-test, but had too large probability of type I error
when the coefficient of variation was large. Three tests performed well: the
approximate F-test, Miller’s test and Bennett’s test. Miller’s test did however
not work properly when the sample sizes were very small, and Bennett’s test
rejected the true null hypotheses too often. The approximate F-test was the
only test that showed almost correct probability of type I error when the sample
sizes were small.
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7 Discussion

Warren (1982) writes: “While workers in many fields recognize the imprecision
in a sample mean, and will now routinely compute a standard error, or a confi-
dence interval, for the mean, many of these same workers will treat the sample
coefficient of variation as if it were an absolute quantity. Inferences based on
this measure of variability may then be questionable. Nevertheless, it should
be possible to persuade such workers that, as with the sample mean, some
measure of precision should be attached to the sample coefficient of variation."
Though many years have passed since Warren made this reflection the situa-
tion has not changed. Researchers still lack standard methods for expressing
the precision in estimated coeflicients of variation. The purpose of this article
has been to explore tests that have been suggested but are seldom used, and
to contribute to the knowledge about how to make valid statistical inference.

For the hypothesis of equal coefficients of variation we have proposed a new
easily calculated test statistic F', which is approximately F-distributed. We
have shown that all moments of F' are close to the moments of an F-distributed
random variable if the unknown common coeflicient of variation is sufficiently
small. We have also proved that the logarithm of F' in distribution equals the
logarithm of an F-distributed random variable plus some error variables that
are in probability of small orders.

We have made a simulation study that is unique and important since many
of the tests have never been compared with each other. The study revealed
that several proposed tests have erroneous type I errors when the sample sizes
are small. The likelihood ratio test, the Wald test, the score test and Doornbos
and Dijkstra’s test shall not be used unless the sample sizes are large. One
of the most interesting results of the simulation study is that a variance test
carried out on log values, i.e., the “log test", performs badly when the coefficient
of variation is not small. This is a key result since statisticians often use the
logarithmic transformation when the standard deviation is proportional to the
average. The proposed approximate F-test was the only test that showed
almost correct probability of type I error when the sample sizes were small.

Unlike several tests the proposed approximate F-test is easily generalized
to a situation with many independent estimates of the coefficients of variation.
We have made the appropriate extension and introduced the generalized ap-
proximate F'-test. In this test estimates based on many observations are more
important than estimates based on few observations. Each estimate is, after a
transformation, simply weighted by its degrees of freedom. This method also
manages the problem considered by Tian (2005) of testing an a priori common
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coefficient of variation.

The coefficient of variation is the predominant measure of dispersion in
diagnostic research. The measurements are often assumed to be normally
distributed. We have studied a real example with immunoassay data in which
the precisions of two diagnostic instruments were compared. The random
variations in the blood sample concentrations were measured by coefficients of
variation, but no statistical tests were performed in the original article. We
have presented a method for analysing the data. Our basis has been that
medical researchers often do right when calculating coefficients of variation,
but are in need of statistical tools for evaluation, exactly as Warren (1982)
pointed out.

Acknowledgements

The author thanks Prof. Dietrich von Rosen for many ideas and Associate Pro-
fessor Jun Yu for editing the final version with great competence. The Centre
of Biostochastics, Swedish University of Agricultural Sciences, and Pharmacia
Diagnostics AB financed the research.

References

Azzalini; A. (1996). Statistical Inference — Based on the Likelihood. Chapman
and Hall: London.

Barndorff-Nielsen, O.E. (1986). Inference on full or partial parameters based
on the standardized signed log likelihood ratio. Biometrika, 73: 307-322.

Barndorff-Nielsen, O.E. (1991). Modified signed log likelihood ratio. Bio-
metrika, 78: 557-563.

Bennett, B.M. (1976). On an approximate test for homogeneity of coefficients
of variation. Contributions to Applied Statistics dedicated to A. Linder,
ed. by Ziegler, W.J. Experientia Supplementum, 22: 169-171.

Bennett, B.M. (1977). LR tests for homogeneity of coefficients of variation in
repeated samples. Sankhya, Series B, 39: 400-405.

Bhoj, D.S. and Ahsanullah, M. (1993). Testing equality of coeflicients of
variation of two populations. Biometrical Journal, 35: 355-359.

Brunnée, T., Seeberger, A., Kleine-Tebbe, J. and Kunkel, G. (1996). Com-
parison between two automated systems to determine specific Igk: CAP
and ELItest. Clinical and Ezperimental Allergy, 26: 1420-1427.

18



DeSilva, B., Smith, W., Weiner, R., Kelley, M., Smolec, J., Lee, B., Khan, M.,
Tacey, R., Hill, H. and Celniker, A. (2003). Recommendations for the
bioanalytical method validation of ligand-binding assays to support phar-
macokinetic assessments of macromolecules. Pharmaceutical Research,
20: 1885-1900.

Doornbos, R. and Dijkstra, J.B. (1983). A multi sample test for the equality
of coefficients of variation in normal populations. Communications in
Statistics - Stmulation and Computation, 12: 147-158.

Feltz, C.J. and Miller, G.E. (1996). An asymptotic test for the equality of
coefficients of variation from k populations. Statistics in Medicince, 15:
647-658.

Fieller, E.C. (1932). A numerical test of the adequacy of A.T. McKay’s
approximation. Journal of the Royal Statistical Society, 95: 699-702.
Fisher, R.A. (1924). On a distribution yielding the error functions of sev-
eral well known statistics. Proceedings of the International Congress of

Mathematics, Toronto, 2: 805-813.

Food and Drug Administration. Guidance for Industry. Statistical Ap-
proaches to Establishing Bioequivalence. Center for Drug Evaluation and
Research (CDER). Maryland, 2001.

Gerig, T.M. and Sen, A.R. (1980). MLE in Two normal samples with equal
but unknown population coefficients of variation. Journal of the Ameri-
can Statistical Association, 75: T04-708.

Gupta, R.C. and Ma, S. (1996). Testing the equality of coefficients of variation
in k normal populations. Communications in Statistics - Theory and
Methods, 25: 115-132.

Iglewicz, B. and Myers, R.H. (1970). Comparison of approximations to the
percentage points of the sample coefficient of variation. Technometrics,
12: 166-169.

Kotz, S. and Johnson, N.L. (1983). Encyclopedia of Statistical Sciences, Vol.
3. Wiley: New York.

Kotz, S. and Johnson, N.L. (1982). Encyclopedia of Statistical Sciences, Vol.
1. Wiley: New York.

Lohrding, R.K. (1975). A two sample test of equality of coefficients of vari-
ation or relative errors. Journal of Statistical Computation and Simula-
tion, 4: 31-36.

McKay, A.T. (1932). Distribution of the coefficient of variation and the ex-
tended t-distribution. Journal of the Royal Statistical Society, 95: 695-
698.

19



Miller, E.G. and Karson, M.J. (1977). Testing equality of two coefficients of
variation. American Statistical Association: Proceedings of the Business
and Economics Section, Part 1. 278-283.

Miller, G.E. (1991). Asymptotic test statistics for coefficients of variation.
Communications in Statistics - Theory and Methods, 20: 3351-3363.
Miller, G.E. and Feltz, C.J. (1997). Asymptotic inference for coefficients of
variation. Communications in Statistics - Theory and Methods, 26: T15-

726.

Owen, D.B. (1968). A survey of properties and applications of the noncentral
t-distribution. Technometrics, 10: 445-478.

Pearson, E.S. (1932). Comparison of A.T. McKay’s approximation with ex-
perimental sampling results. Journal of the Royal Statistical Society, 95:
703-704.

Pearson, K. (1896). Mathematical contributions to the theory of evolution
ITT: Regression, heredity, and panmixia. Philosophical Transactions of
the Royal Society of London, Series A, 187: 253-318.

Pitman, E.J.G. (1939). Tests of hypotheses concerning location and scale
parameters. Biometrika, 31: 200-215.

Rao, K.A. and Vidja, R. (1992). On the performance of a test for coefficient
of variation. Calcutta Statistical Association Bulletin, 42: 87-95.

Schimmerl-Metz, S.M., Metz, V.M., Totterman, S.M.S., Mann, F.A. and
Gilula, L.A. (1999). Radiologic measurement of the scapholunate joint:
Implications of biologic variation in scapholunate joint morphology. The
Journal of Hand Surgery, 24A: 1237-1244.

Shafer, N.J. and Sullivan, J.A. (1986). A simulation study of a test for the
equality of the coefficients of variation. Communications in Statistics -
Simulation and Computation , 15: 681-695.

Shao, J. (2003). Mathematical Statistics. 2nd ed. Springer: New York.

Tian, L. (2005). Inferences on the common coefficient of variation. Statistics
in Medicine, 24:2213-2220. DOI:10.1002/sim.2088

Tsui, K.W. and Weerahandi, S. (1989). Generalized P-values in significance
testing of hypotheses in the presence of nuisance parameters. Journal of
American Statistical Association, 84:602-607.

Umphrey, G.J. (1983). A comment on McKay’s approximation for the co-
efficient of variation. Communications in Statistics - Simulation and
Computation, 12: 629-635.

20



Vangel, M.G. (1996). Confidence intervals for a normal coefficient of variation.
The American Statistician, 15: 21-26.
Warren, W.G. (1982). On the adequacy of the chi-squared approximation for

the coefficient of variation. Communications in Statistics - Simulation
and Computation, 11:659-666.

Wong, A.C.M. and Wu, J. (2002). Small sample asymptotic inference for

the coefficient of variation: normal and nonnormal models. Journal of
Statistical Planning and Inference, 104: 73-82.

21



Tables and Figures

The significance level is 5% in all cases. In tables 3-6, following notation is
used: F' = F-test (14), R = Likelihood ratio test (6), M = Miller’s test (8),
B = Bennett’s test (7), D = Doornbos and Dijkstra’s test (11), W = Wald
test (9), S = Score test (10), N = Naive test (13), L = Log test (12).

Table 3: Case 1: Pr(Type I error) in percentages when v, = v2 = 0.05.

ny ng F R M B D w S N L
2 2 456 2428 1.00 885 000 197 0.00 456 4.57
3 3 512 1530 6.35 7.65 - 6.55 0.00 5.14 5.17
4 4 492 11.17 6.17 6.72 0.00 6.34 031 493 5.01
5 5 515 983 623 651 002 631 219 519 5.23
6 6 466 846 571 584 043 576 273 469 4.73
7T 7 505 815 584 598 1.05 590 3.64 5.13 5.18
8 8 502 769 572 582 161 577 377 504 5.12
9 9 483 712 538 542 178 539 384 486 5.00

10 10 478 6.80 5.28 535 210 531 394 481 495

11 11 495 6.85 553 599 245 556 432 499 5.18

12 12 504 6.65 5.53 556 2.60 553 440 5.07 525

13 13 491 651 542 549 288 546 439 497 5.01

14 14 511 6.60 5.57 560 321 559 4.61 5.17 5.29

15 15 498 627 530 533 323 533 453 503 513

16 16 493 599 518 521 331 520 455 498 5.09

17 17 487 592 521 521 324 521 447 490 5.07

18 18 523 6.30 5.55 558 3.56 5.58 486 5.28 5.37

19 19 494 599 529 530 361 529 461 5.00 5.31

20 20 5.16 597 542 542 3.96 542 4.87 520 5.34
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Figure 1: Case 1. Probability of type I error when v; = v2 = 0.05 and n; = na.




Table 4: Case 2: Pr(Type I error) in percentages when 1 = 2 = 0.25.

ny nyg F R M B D w S N L
2 2 502 2469 032 9.18 0.00 037 0.00 520 5.34
3 3 491 1478 550 7.57 @ - 3.59 0.00 5.38 6.01
4 4 516 11.64 589 7.02 0.00 431 037 5.7 7.13
5 5 521 10.02 577 6.53 0.07 4.62 231 596 7.95
6 6 507 9.00 566 6.21 053 465 3.17 6.01 8.76
77 496 829 546 597 096 458 354 595 9.25
8 8 487 749 521 563 143 443 3.70 584 9.66
9 9 505 746 548 584 214 466 4.07 6.21 10.42

10 10 504 715 537 5.72 233 471 420 6.15 10.92

11 11 548 719 582 6.03 287 523 4.7 6.61 11.33

12 12 496 6.37 5.22 542 273 475 440 597 11.30

13 13 493 652 522 548 292 469 437 6.17 11.53

14 14 496 638 5.17 531 314 474 450 6.18 11.79

15 15 524 6.70 548 5.69 341 5.03 4.7 6.63 12.69

16 16 481 6.13 5.03 515 330 4.64 446 6.11 12.58

17 17 535 6.39 556 564 364 514 494 6.51 13.20

18 18 5.03 6.26 529 551 3.52 486 4.70 6.47 13.39

19 19 484 574 499 5.09 354 470 452 6.06 13.08

20 20 499 588 515 524 387 485 473 6.23 13.55
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Figure 2: Case 2. Probability of type I error when v; = v2 = 0.25 and n; = na.




Table 5: Case 3: Pr(Type I error) in percentages when 1 = 2 = 0.25.
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5.17
5.29
5.11
5.31
5.15
5.20
4.87
5.03
4.86
5.19
5.18
5.27
5.05
5.04
4.91
4.98
4.79
5.24
5.10

21.56
13.95
11.55
11.02
10.38
10.68
10.02
10.48
10.60
11.00
10.58
10.84
10.84
10.58
11.09
11.08
10.72
11.23
11.38

3.49
5.48
5.77
5.90
5.38
5.18
4.79
4.67
4.43
4.53
4.56
4.37
4.20
4.08
3.93
4.00
3.73
4.01
3.86

8.36
7.59
6.92
6.98
6.53
6.71
6.33
6.27
6.19
6.29
6.46
6.56
6.29
6.06
6.12
6.15
5.88
6.34
6.30

0.00

0.00
0.00
0.00
0.01
0.05
0.14
0.21
0.27
0.44
0.48
0.43
0.61
0.63
0.68
0.78
0.87
1.07

20.45
6.49
4.22
5.50
6.91
9.22
10.50
12.12
13.51
14.77
15.34
16.38
17.10
17.75
18.82
19.11
19.18
19.87

20.28

2.24
1.35
0.47
1.82
2.54
2.62
2.50
2.74
2.81
2.97
2.86
3.08
2.92
2.75
2.69
2.90
2.62
2.89
2.68

5.55
9.85
0.69
6.09
9.95
6.13
2.67
5.85
0.81
6.12
6.24
6.26
6.15
6.02
5.94
6.11
5.71
6.24
6.12

6.00
6.84
7.10
7.64
7.77
8.19
7.78
8.09
8.18
8.10
8.38
8.75
8.46
8.40
8.13
8.18
7.92
8.43
8.35
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Figure 3: Case 3. Probability of type I error when v, = y9 = 0.25 and n; = 4.




Table 6: Case 4: Power in percentages when v; = 0.05 and v = 0.10.

ny na F R M B D w S N L
2 2 615 3044 125 11.77 0.00 191 0.00 6.17 6.18
3 3 972 2619 12.03 14.56 - 11.99 0.00 9.82  9.95
4 4 1509 29.05 18.04 19.34 0.00 1792 143 1530 15.68
5 5 2052 3227 2338 2431 0.28 2332 1132 20.84 21.22
6 6 2665 3740 29.71 3038 4.72 29.63 1942 26.98 27.68
7T 7 3251 4186 3514 3599 1230 35.03 26.77 32.88 33.43
§ 8 3876 47.13 4121 41.56 20.38 41.14 34.15 39.15 39.82
9 9 4407 5127 46.19 46.62 28.07 46.14 40.14 4440 45.04

10 10 4947 5597 5151 51.76 34.83 5147 46.07 49.85 50.47

11 11 54.16 59.92 5596 56.13 41.80 5594 51.36 54.54 55.12

12 12 5796 63.13 59.54 59.73 47.12 59.50 55.50 5837 5877

13 13 6340 68.02 64.93 65.00 53.97 64.90 61.58 63.74 64.44

14 14 67.23 7128 6853 68.65 58.74 68.51 6552 67.597 68.29

15 15 6955 73.20 70.73 70.81 6258 70.70 68.18 69.89 70.47

16 16 7344 7636 7430 74.39 67.03 7427 7215 73.69 74.10

17 17 76.04 7892 76.94 77.06 70.64 76.94 7490 76.37 76.90

18 18 7872 81.13 7943 7949 74.03 7941 7758 7896 79.48

19 19 81.09 83.26 81.82 81.88 77.13 81.80 80.19 &81.39 81.79

20 20 83.68 8559 84.37 84.42 80.02 84.33 82.98 83.95 84.26

28



Approximate F test

_*_
= 0.a ****_*:*-*
= (LT oHF
£ 04 o
£ 02 4
ot
Likelihaod ratio test Miller's test
¥ A+
= **'*' **‘*'
= 04 +* *
=] 02 ‘*.FF* *_*
o W -**
0 +
Bennett's test Doornbas & Dijkstra’s test
ik ¥ +
= - *_,He*** " **-JH?
s ¥ #¥
T 04 e +*
2 o] " R
O e *
0 PR
Wyald test Score test
* +
. 08 e et et
E D& ***- ***
¥ +
£ 04 +¥ +¥
e +¥ *
o 02 4 Pt
0k g
Maive test Log test
+¥ ¥
= Eg ******* +******
I + +
R **** *ﬁ*
e * +
g 02 ** +¥
0 +¥ ¥

Figure 4: Case 4. Power when v, = 0.05,72 = 0.10 and ny = na.
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